Welcome   Sponsored By
Subscribe | Register | Advertise | Newsletter | About us | Contact us
   


Newly hatched Pacific cod larva. Credit: NOAA Fisheries/Emily Slesinger

NOAA: Pacific Cod Gene Study Shows How Warming Oceans Threaten Larval Survival

Click on the flag for more information about United States UNITED STATES
Monday, February 09, 2026, 06:00 (GMT + 9)

New gene expression research links marine heatwaves to energy depletion and inflammation in young cod, raising concerns for the future of Alaska’s fisheries.

Newly hatched Pacific cod larva. Credit: NOAA Fisheries/Emily Slesinger

A new scientific study reveals how rising ocean temperatures and ocean acidification affect Pacific cod larvae, shedding light on why recent marine heatwaves may be driving population declines in the Gulf of Alaska. Using advanced gene expression analysis, researchers found that while cod larvae can tolerate cold and acidified waters, warming temperatures may trigger fatal energy shortages and inflammatory responses during early life stages.

Pacific Cod Declines Raise Alarm

Pacific cod are among the most valuable commercial fish species in Alaska, playing a critical ecological role as both predators and prey. However, their populations have dropped sharply in recent years. Scientists believe this decline is closely tied to marine heatwaves, which have become more frequent and intense. Evidence suggests that early life stages, particularly larvae, are the most vulnerable.

With climate models predicting more frequent heatwaves and intensified ocean acidification, especially at high latitudes, understanding how young cod respond to these changes has become urgent.

Click on the image to enlarge it

Testing Temperature and Acidification Effects

In a 2024 study conducted at the NOAA Fisheries Alaska Fisheries Science Center, scientists raised Pacific cod from embryos to larvae under controlled laboratory conditions. The larvae were exposed to three temperatures3°C, 6°C, and 10°C—and to seawater representing both current ocean chemistry and more acidic conditions projected for the end of the 21st century.

The results were striking. Larval mortality was extremely high at warmer temperatures, regardless of acidity. Acidification alone did not consistently increase mortality, but its effects varied depending on the larvae’s developmental stage.

Why Warming Is So Deadly

To understand why larvae were dying, researchers took a molecular approach.
“Finding larvae that are dying in the field is very unlikely, but we were able to sample experimental larvae that we knew were dying rapidly due to warming,” said Emily Slesinger, researcher at NOAA’s Alaska Fisheries Science Center. They also sampled larvae exposed to other conditions. The experiments simulated more acidified water and colder temperatures which Pacific cod larvae currently experience in some regions and years. Slesinger continues, “The unique thing about this study’s approach is to look beyond whether these larvae live or die under different conditions, but to understand why through gene expression analysis.”

The team analyzed which genes were turned on or off under different conditions. While fish are born with a fixed set of genes, gene expression—how actively those genes are used—changes in response to the environment.

“Temperature has a big effect on gene activity, especially in cold-blooded species like fish with body temperatures that shift with the water around them,” said Laura Spencer of the University of Washington, who led the molecular analysis. “In our study, we looked at which genes larval cod were actively using under different temperatures and levels of acidification. By comparing those patterns, we can identify why larvae are so sensitive to warming, and how they cope with acidified and cold conditions.”

Energy Depletion and Inflammation Identified

The gene expression data pointed to two main causes of heat-related mortality:

  • Energy shortages: Warmer water accelerates metabolism, growth, and development, sharply increasing energy demand.

  • Inflammation: Heat activates immune and inflammatory pathways that are themselves energetically expensive.

Together, these processes can rapidly exhaust the larvae’s lipid (fat) reserves, both in their tissues and their food. In extreme cases, larvae effectively starve, even in the presence of food.

Body condition of larvae over time under different temperature and acidity combinations. Condition decreased rapidly in the warmest (10°C) treatment, leading to mortality and an early end to the experiment. Acidification affected larvae only at the optimum temperature of 6°C. Credit: NOAA Fisheries

Acidification and Cold: Different Challenges

While acidification did not directly cause high mortality, it appeared to affect fat absorption in the intestine, leaving larvae slightly thinner. In the wild—where food can be scarce—this could still reduce survival.

Larvae raised in cold conditions responded by increasing production of enzymes and proteins, likely compensating for slower biochemical reactions. Even so, growth remained slow, which can reduce the number of fish that survive long enough to enter the fishery. Previous research shows Pacific cod cannot tolerate sub-zero temperatures, as their blood lacks antifreeze proteins found in some cold-adapted fish.

Laboratory set up for ocean acidification and ocean warming experiments with early stages of Pacific cod. Large tanks in the background provide chilled and ambient seawater that are mixed to temperature. Small round tanks house eggs and larvae at different temperatures and acidification levels. Acidification is controlled by bubbling carbon dioxide into the seawater: more carbon dioxide causes higher acidity (lower pH). Credit: NOAA Fisheries/Emily Slesinger

Implications for the Future of Pacific Cod

The genes identified in this study may help explain why some cod populations fare better than others under changing conditions. Certain populations may possess genetic traits that improve tolerance to warming, cold, or acidified spawning environments.

“Overall, warming appears to be the main factor affecting cod larval physiology, and this could impact future growth of the population,” said Spencer.

As climate change continues to reshape ocean conditions, understanding these molecular responses will be critical for predicting the future of Pacific cod and managing one of Alaska’s most important fisheries.


🇯🇵 Japanese(日本語)

太平洋タラの遺伝子研究が、海洋温暖化が幼生の生存を脅かす仕組みを明らかに

新たな遺伝子発現研究により、海洋熱波が幼いタラのエネルギー枯渇と炎症を引き起こすことが示され、アラスカ漁業の将来に懸念が高まっている。

新たな科学研究により、海水温の上昇および海洋酸性化太平洋タラの幼生にどのような影響を与えるのかが明らかになり、近年の海洋熱波アラスカ湾における個体数減少を引き起こしている理由が示された。高度な遺伝子発現解析を用いた結果、タラの幼生は低温および酸性化した海水には耐えられる一方で、高水温は致命的なエネルギー不足と炎症反応を引き起こす可能性があることが分かった。

太平洋タラの減少が警鐘を鳴らす

太平洋タラアラスカで最も価値の高い商業魚種の一つであり、捕食者および被食者として生態系において重要な役割を担っている。しかし近年、その個体数は大きく減少している。科学者たちは、この減少が海洋熱波と密接に関連していると考えており、特に初期生活段階、とりわけ幼生が最も影響を受けやすいことが示されている。

気候モデルでは、高緯度地域を中心に、将来的に海洋熱波の頻度と強度が増し、海洋酸性化も進行すると予測されている。

水温と酸性化の影響を検証

2024年NOAA水産局アラスカ漁業科学センターで行われた研究では、太平洋タラを胚から幼生まで育成し、3°C6°C10°C3段階の水温条件にさらした。さらに、現在の海洋条件21世紀末に予測される酸性化条件を再現した海水を用い、酸性化との相互作用を調べた。

その結果、高水温条件では幼生の死亡率が非常に高いことが明らかになった。一方、酸性化単独の影響は一貫しておらず、幼生の発達段階によって異なっていた。

なぜ温暖化は致命的なのか

幼生が死亡する理由を理解するため、研究者たちは分子レベルでの解析を行った。
「野外で死亡している幼生を見つけることはほぼ不可能ですが、実験では温暖化によって急速に死亡している幼生を直接サンプリングすることができました」と、NOAAアラスカ漁業科学センターエミリー・スレシンジャーは述べている。

研究チームは、異なる環境条件下でどの遺伝子が活性化または抑制されているかを分析した。魚は生涯を通じて同じ遺伝子を持つが、遺伝子発現—すなわち遺伝子がどの程度利用されるか—は環境に応じて変化する。

水温は遺伝子活動に大きな影響を与えます。特に、体温が周囲の水に依存する魚のような変温動物では顕著です」と、分子解析を主導したワシントン大学ローラ・スペンサーは説明した。

エネルギー枯渇と炎症が特定される

遺伝子発現データは、熱に関連した死亡の主な原因が2つあることを示した。

  • エネルギー不足:高水温は代謝、成長、発達を加速させ、エネルギー需要を急激に高める。

  • 炎症:高温は免疫および炎症関連の経路を活性化し、これ自体が多大なエネルギーを消費する。

これらが同時に起こることで、幼生の脂質(脂肪)貯蔵は急速に枯渇し、極端な場合には飢餓状態に陥る。

酸性化と低温:異なる課題

酸性化は高い死亡率を直接引き起こすことはなかったが、腸での脂肪吸収に影響を与える可能性が示された。その結果、幼生はやや痩せた状態になっていた。自然環境では餌が限られることが多く、これは生存率に影響を与える可能性がある。

低温条件では、幼生は酵素やタンパク質の産生を増加させ、遅い生化学反応を補償していると考えられる。しかし、それでも成長は遅く、漁業に加入できる個体数が減少する可能性がある。過去の研究では、太平洋タラは不凍タンパク質を持たないため、氷点下の水温には耐えられないことが示されている。

太平洋タラの将来への示唆

本研究で特定された遺伝子は、将来の太平洋タラの運命にとって重要となる可能性がある。一部の個体群は、温暖化低温、または酸性化した産卵環境に適応しやすい遺伝的特性を持つ可能性がある。

「総合的に見ると、温暖化がタラの幼生の生理に最も大きな影響を与えており、これは将来の個体群成長に影響を及ぼす可能性があります」と、スペンサーは述べている。


🇨🇳 Chinese (Simplified / 简体中文)

太平洋鳕鱼基因研究揭示海洋变暖如何威胁幼体存活

最新的基因表达研究表明,海洋热浪会导致幼鳕能量枯竭和炎症反应,引发对阿拉斯加渔业未来的担忧。

一项新的科学研究揭示了海水升温海洋酸化如何影响太平洋鳕鱼幼体,并解释了近年来海洋热浪可能为何正在推动阿拉斯加湾鳕鱼种群下降。通过先进的基因表达分析,科学家发现,鳕鱼幼体能够耐受低温酸化海水,但升温可能通过引发致命的能量不足和炎症反应导致高死亡率。

太平洋鳕鱼数量下降引发警示

太平洋鳕鱼阿拉斯加最重要的商业渔业物种之一,在生态系统中同时作为捕食者和猎物发挥关键作用。然而,近年来其种群数量显著下降。科学家认为,这一趋势与海洋热浪密切相关,而早期生命阶段,尤其是幼体,似乎受到的影响最大。

气候模型预测,未来高纬度地区的海洋热浪将更加频繁和强烈,海洋酸化也将进一步加剧。

测试温度与酸化的影响

2024年NOAA渔业局阿拉斯加渔业科学中心开展了一项实验研究,将太平洋鳕鱼从胚胎培育至幼体,并分别暴露于3°C6°C10°C三种温度条件下。同时,研究人员使用模拟当前海洋条件本世纪末预测的酸化条件的海水,以评估温度与酸化的交互影响。

研究结果显示,高温条件下幼体死亡率极高,而酸化本身的影响则更加复杂,并取决于幼体的发育阶段

为何变暖如此致命

为了理解幼体死亡的原因,研究人员从分子层面展开分析。
“在野外几乎不可能发现正在死亡的幼体,但在实验中,我们能够直接采集到因变暖而迅速死亡的幼体,”NOAA阿拉斯加渔业科学中心研究员**艾米丽·斯莱辛格(Emily Slesinger)**表示。

研究团队分析了在不同环境条件下哪些基因被激活或抑制。鱼类一生携带相同的基因,但基因表达——即基因被利用的程度——会随着环境变化而显著改变。

温度对基因活动具有巨大影响,尤其是在体温随环境变化的冷血动物中,”负责分子分析的华盛顿大学科学家**劳拉·斯宾塞(Laura Spencer)**说道。

能量枯竭与炎症被确定为关键因素

基因表达数据表明,与高温相关的幼体死亡主要由两个因素驱动

  • 能量不足:高温加快代谢、生长和发育,大幅提高能量需求。

  • 炎症反应:升温激活免疫和炎症相关过程,而这些过程本身消耗大量能量

这两种压力叠加,会迅速耗尽幼体体内和食物中的脂质(脂肪)储备,在极端情况下导致幼体因饥饿而死亡

酸化与低温:不同的挑战

酸化本身并未直接导致高死亡率,但似乎会影响肠道对脂肪的吸收,使幼体略显瘦弱。在自然环境中,食物往往有限,这可能对生存产生重要影响。

低温环境中,幼体会增加酶和蛋白质的产生,以补偿较慢的新陈代谢和生化反应。然而,生长仍然缓慢,可能减少成功进入渔业种群的个体数量。此前研究表明,太平洋鳕鱼由于缺乏抗冻蛋白,无法在零下水温中存活。

对太平洋鳕鱼未来的启示

本研究识别出的基因可能对太平洋鳕鱼的未来至关重要。一些种群可能具备遗传特征,使其更容易适应变暖低温酸化的产卵环境。

“总体来看,变暖是影响鳕鱼幼体生理的主要因素,这可能会影响未来种群的增长,”斯宾塞表示。

[email protected]
www.seafood.media


 Print


Click to know how to advertise in FIS
MORE NEWS
Japan
Feb 9, 04:00 (GMT + 9):
Hokkaido scallop season peaks as processors struggle with high costs
China
Feb 9, 02:00 (GMT + 9):
Zhejiang Ocean University Releases 'Huangxin No. 1' Breeding Chip for Large Yellow Croaker
Indonesia
Feb 9, 00:30 (GMT + 9):
Indonesia plans to build nearly 1,500 small fishing boats and a limited number of larger vessels
Argentina
Feb 9, 00:10 (GMT + 9):
Chubut promotes an urgent agenda against illegal fishing while Dr. César Lerena awaits official clarifications
Norway
Feb 9, 00:10 (GMT + 9):
Market Update: Norwegian Cod Exports Begin the Year on a Mixed but Strong Note
Argentina
Feb 9, 00:00 (GMT + 9):
IN BRIEF - Argentina tightens illegal fishing enforcement, elevating satellite tracking as evidence
China
Feb 9, 00:00 (GMT + 9):
Blue Ocean 201 Returns Triumphantly After Completing 2025 Northwest Indian Ocean Survey
Peru
Feb 7, 00:10 (GMT + 9):
Giant Squid: to Regulate or to Plunder
China
Feb 6, 06:20 (GMT + 9):
Ningbo Customs Launches AI-Powered ‘Robot Dog’ to Boost Smart Port Inspections
Spain
Feb 6, 06:00 (GMT + 9):
IN BRIEF - ARVI warns of the collapse of the CATCH system and demands urgent solutions amid the risk of fish shortages
Norway
Feb 6, 06:00 (GMT + 9):
Global Market Update: King Crab, Snow Crab and Cold-Water Prawn
Denmark
Feb 6, 05:00 (GMT + 9):
Danish pelagic fleet goes green at Skagen port
Viet Nam
Feb 6, 01:50 (GMT + 9):
Vietnam Seafood Exports Jump Nearly 13% in January 2026 as China Drives Growth, US Slumps Under MMPA Pressure
China
Feb 6, 00:10 (GMT + 9):
Fangxian Salmon Valley Base Secures BAP Certification, Strengthening Green Agriculture’s Global Market Credentials



Lenguaje
FEATURED EVENTS
  
TOP STORIES
Danish pelagic fleet goes green at Skagen port
Denmark EU-backed shore power project cuts emissions, noise, and diesel use as Denmark’s largest fishing port accelerates its energy transition At the northern tip of Denmark, the Port of Skagen—...
Ningbo Customs Launches AI-Powered ‘Robot Dog’ to Boost Smart Port Inspections
China The deployment at Meishan Port marks a major step toward AI-assisted, intelligent supervision of inbound empty containers at Ningbo-Zhoushan Port At the empty container inspection yard of Meishan Por...
Global Market Update: King Crab, Snow Crab and Cold-Water Prawn
Norway Exports show sharp contrasts in January as king crab struggles, snow crab surges, and prawn volumes fall amid supply constraints and tariff uncertainty. Challenging January for King Crab Norway expo...
Giant Squid: to Regulate or to Plunder
Peru Between March 2 and 6, Panama City will host the 14th meeting of the South Pacific Regional Fisheries Management Organization (SPRFMO), a decisive gathering for the future of transboundary high-seas f...
 

Umios Corporation | Maruha Nichiro Corporation
Nichirei Corporation - Headquarters
Pesquera El Golfo S.A.
Ventisqueros - Productos del Mar Ventisqueros S.A
Wärtsilä Corporation - Wartsila Group Headquarters
ITOCHU Corporation - Headquarters
BAADER - Nordischer Maschinenbau Rud. Baader GmbH+Co.KG (Head Office)
Inmarsat plc - Global Headquarters
Marks & Spencer
Tesco PLC (Supermarket) - Headquarters
Sea Harvest Corporation (PTY) Ltd. - Group Headquarters
I&J - Irvin & Johnson Holding Company (Pty) Ltd.
AquaChile S.A. - Group Headquarters
Pesquera San Jose S.A.
Nutreco N.V. - Head Office
CNFC China National Fisheries Corporation - Group Headquarters
W. van der Zwan & Zn. B.V.
SMMI - Sunderland Marine Mutual Insurance Co., Ltd. - Headquarters
Icicle Seafoods, Inc
Starkist Seafood Co. - Headquearters
Trident Seafoods Corp.
American Seafoods Group LLC - Head Office
Marel - Group Headquarters
SalMar ASA - Group Headquarters
Sajo Industries Co., Ltd
Hansung Enterprise Co.,Ltd.
BIM - Irish Sea Fisheries Board (An Bord Iascaigh Mhara)
CEFAS - Centre for Environment, Fisheries & Aquaculture Science
COPEINCA ASA - Corporacion Pesquera Inca S.A.C.
Chun Cheng Fishery Enterprise Pte Ltd.
VASEP - Vietnam Association of Seafood Exporters & Producers
Gomes da Costa
Furuno Electric Co., Ltd. (Headquarters)
NISSUI - Nippon Suisan Kaisha, Ltd. - Group Headquarters
FAO - Food and Agriculture Organization - Fisheries and Aquaculture Department (Headquarter)
Hagoromo Foods Co., Ltd.
Koden Electronics Co., Ltd. (Headquarters)
A.P. Møller - Maersk A/S - Headquarters
BVQI - Bureau Veritas Quality International (Head Office)
UPS - United Parcel Service, Inc. - Headquarters
Brim ehf (formerly HB Grandi Ltd) - Headquarters
Hamburg Süd Group - (Headquearters)
Armadora Pereira S.A. - Grupo Pereira Headquarters
Costa Meeresspezialitäten GmbH & Co. KG
NOAA - National Oceanic and Atmospheric Administration (Headquarters)
Mowi ASA (formerly Marine Harvest ASA) - Headquarters
Marubeni Europe Plc -UK-
Findus Ltd
Icom Inc. (Headquarter)
WWF Centroamerica
Oceana Group Limited
The David and Lucile Packard Foundation
Ajinomoto Co., Inc. - Headquarters
Friosur S.A. - Headquarters
Cargill, Incorporated - Global Headquarters
Benihana Inc.
Leardini Pescados Ltda
CJ Corporation  - Group Headquarters
Greenpeace International - The Netherlands | Headquarters
David Suzuki Foundation
Fisheries and Oceans Canada -Communications Branch-
Mitsui & Co.,Ltd - Headquarters
NOREBO Group (former Ocean Trawlers Group)
Natori Co., Ltd.
Carrefour Supermarket - Headquarters
FedEx Corporation - Headquarters
Cooke Aquaculture Inc. - Group Headquarters
AKBM - Aker BioMarine ASA
Seafood Choices Alliance -Headquarter-
Austevoll Seafood ASA
Walmart | Wal-Mart Stores, Inc. (Supermarket) - Headquarters
New Japan Radio Co.Ltd (JRC) -Head Office-
Gulfstream JSC
Marine Stewardship Council - MSC Worldwide Headquarters
Royal Dutch Shell plc (Headquarter)
Genki Sushi Co.,Ltd
Iceland Pelagic ehf
AXA Assistance Argentina S.A.
Caterpillar Inc. - Headquarters
Tiger Brands Limited
SeaChoice
National Geographic Society
AmazonFresh, LLC - AmazonFresh

Copyright 1995 - 2026 Seafood Media Group Ltd.| All Rights Reserved.   DISCLAIMER